Ford Focus Forum, Ford Focus ST Forum - View Single Post - DTC Codes (Detailed Descriptions)
View Single Post
Old 09-14-2005, 04:27 PM   #1
S2
Retired Fanatic
 
S2's Avatar
 
Join Date: Mar 2004
Fan#: 4939
Location: Canada, Canada
What I Drive: Camaro 2SS/RS

Posts: 19,999
FF Reputation: 67 S2 Excellent Standing Member
Buy-Sell-Trade Rating: (20)
DTC Codes (Detailed Descriptions)

Diagnostic Trouble Code (DTC) Descriptions
DTC - Description Possible Causes Diagnostic Aides


P0102 - Mass Air Flow (MAF) Circuit Low Input
The MAF sensor circuit is monitored by the PCM for low air flow (or voltage) input through the comprehensive component monitor (CCM). If during key ON engine running the air flow (or voltage) changes below a minimum calibrated limit, the test fails. MAF sensor disconnected
MAF circuit open to PCM
VPWR open to MAF sensor
PWR GND open to MAF sensor
MAF RTN circuit open to PCM
MAF circuit shorted to GND
Intake air leak (near MAF sensor)
A closed throttle indication [throttle position (TP) sensor system]
Damaged MAF sensor
Damaged PCM
A MAF V PID (MAF PID) reading less than 0.23 volts (Refer to equivalent grams/second chart in GO to Pinpoint Test DC ) in continuous memory or key ON and engine running indicates a hard fault.

P0103 - Mass Air Flow (MAF) Circuit High Input The MAF sensor circuit is monitored by the PCM for high air flow (or voltage) input through the comprehensive component monitor (CCM). If during key ON engine OFF or key ON engine running the air flow (or voltage) changes above a maximum calibrated limit, the test fails. MAF sensor screen is blocked
MAF circuit shorted to VPWR
Damaged MAF sensor
Damaged PCM
A MAF V PID (MAF PID) reading less than 4.6 volts (Refer to equivalent grams/second chart in GO to Pinpoint Test DC ) in continuous memory or key ON and engine running indicates a hard fault.

P0106 - Barometric (BARO) Pressure Sensor Circuit Performance Baro sensor input to the PCM is monitored and is not within the calibrated value. Slow responding BARO sensor
Electrical circuit failure
Damaged BARO sensor
Damaged PCM
VREF voltage should be between 4.0 and 6.0 volts
PID reading is in frequency

P0107 - BARO/MAP Sensor Low Voltage Detected Sensor operating voltage is less than 0.25 volts (VREF), as a result it failed below the minimum allowable calibrated parameter. Open in the circuit, or short to ground
VREF circuit open, or short to ground
Damaged BARO/MAP sensor
Damaged PCM
VREF should be greater than 4.0 volts
PID reading is in frequency/volts

P0108 - BARO/MAP Sensor High Voltage Detected Sensor operating voltage is greater than 5.0 volts (VREF), as a result it failed above maximum allowable calibrated parameter. VREF shorted to VWPR
BARO/MAP signal shorted to VPWR
Damaged BARO/MAP sensor
Damaged PCM
VREF should be less than 6.0 volts. PID reading is in frequency/Volts

P0109 - BARO/MAP Sensor Circuit Intermittent The sensor signal to the PCM is failing intermittently. Loose electrical connection
Damaged BARO/MAP sensor
Check harness and connection.

P0112 - Intake Air Temperature (IAT) Circuit Low Input Indicates the sensor signal is less than Self-Test minimum. The IAT sensor minimum is 0.2 volts or 121C (250F). Grounded circuit in harness
Damaged sensor
Improper harness connection
Damaged PCM
IAT V PID reading less than 0.2 volts with key ON and engine OFF or during any engine operating mode indicates a hard fault.

P0113 - Intake Air Temperature (IAT) Circuit High Input Indicates the sensor signal is greater than Self-Test maximum. The IAT sensor maximum is 4.6 volts or -50C (-58F). Open circuit in harness
Sensor signal short to power
Damaged sensor
Improper harness connection
Damaged PCM
IAT V PID reading greater than 4.6 volts with key ON and engine OFF or during any engine operating mode indicates a hard fault.

P0116 - Engine Coolant Temperature Circuit Range/Performance Failure Indicates the engine coolant temperature rationality test has failed. The PCM logic that sets this DTC indicates that engine coolant temperature sensor (ECT or CHT) drifted higher than the nominal sensor calibration curve and could prevent one or more OBD II monitors from executing.
The PCM runs this logic after an engine off "calibrated soak period (typically 6 hours). This soak period allows the Intake Air Temperature (IAT) and engine coolant temperature (CHTor ECT) to stabilize and not differ by more than a calibrated value. DTC P0116 is set when all of the following conditions are met:
Engine coolant temperature at engine start exceeds IAT at engine start by more than a calibrated value, typically 30F (1C).
Engine coolant temperature exceeds a calibrated value, typically 225F (107C).
The Fuel, Heated Oxygen Sensor, Catalyst and Misfire monitors have not completed.
Calibrated timer to set DTC P0116 has expired.
Engine Coolant Temperature (ECT) or Cylinder Head Temperature (CHT) sensor
Coolant System Concern
Ensure IAT and engine coolant temperature are similar when engine is cold. Also ensure engine coolant temperature sensor (ECT or CHT) and actual engine operating temperature are the same.

P0117 - Engine Coolant Temperature (ECT) Circuit Low Input Indicates the sensor signal is less than Self-Test minimum. The ECT sensor minimum is 0.2 volts or 121C (250F). Note on some vehicles that are not equipped with an ECT sensor, CHT can be used and can set this DTC. Grounded circuit in harness
Damaged sensor
Improper harness connection
Damaged PCM
ECT V PID reading less than 0.2 volts with key ON and engine OFF or during any engine operating mode indicates a hard fault.

P0118 - Engine Coolant Temperature (ECT) Circuit High Input Indicates the sensor signal is greater than Self-Test maximum. The ECT sensor maximum is 4.6 volts or -50C (-58F). Note on some vehicles that are not equipped with an ECT sensor, CHT can be used and can set this DTC. Open circuit in harness
Sensor signal short to power
Damaged PCM
Improper harness connection
Damaged sensor
ECT V PID reading greater than 4.6 volts with key ON and engine OFF or during any engine operating mode indicates a hard fault.

P0121 - Throttle Position (TP) Circuit Performance Problem The TP sensor circuit is monitored by the PCM for a non closed throttle position at idle. If key ON engine running self-test terminates upon placing the transmission range selector in gear (DRIVE or REVERSE) or when closing the throttle (idle) after opening it (in PARK or NEUTRAL) the TP closed throttle position is not attained, the test fails. Binding throttle linkage
Damaged throttle body
TP circuit open to PCM
Damaged TP sensor
SIG RTN circuit open to TP sensor
Drive vehicle, bring to a stop, turn key OFF. Start vehicle, run key ON engine running self-test at idle. Access KOER diagnostic trouble codes on scan tool.

P0122 - Throttle Position (TP) Circuit Low Input The TP sensor circuit is monitored by the PCM for a low TP rotation angle (or voltage) input through the comprehensive component monitor (CCM). If during key ON engine OFF or key ON engine running the TP rotation angle (or voltage) changes below a minimum calibrated limit, the test fails. TP sensor not seated properly
TP circuit open to PCM
VREF open to TP sensor
TP circuit short to GND
Damaged TP sensor
Damaged PCM
A TP PID (TP V PID) reading less than 3.42% (0.17 volt) in key ON engine OFF, continuous memory or key ON engine running indicates a hard fault.

P0123 - Throttle Position (TP) Circuit High Input The TP sensor circuit is monitored by the PCM for a high TP rotation angle (or voltage) input through the comprehensive component monitor (CCM). If during key ON engine OFF or key ON engine running the TP rotation angle (or voltage) changes above maximum calibrated limit, the test fails. TP sensor not seated properly
TP circuit short to PWR
VREF short to PWR
SIG RTN circuit open to TP sensor
Damaged TP sensor
Damaged PCM
A TP PID (TP V PID) reading greater than 93% (4.65 volts) in key ON engine OFF, continuous memory or key ON engine running indicates a hard fault.

P0125 - Insufficient Coolant Temperature For Closed Loop Fuel Control Indicates the ECT or CHT sensor has not achieved the required temperature level to enter closed loop operating conditions within a specified amount of time after starting engine. Insufficient warm up time
Low engine coolant level
Leaking or stuck open thermostat
Malfunctioning ECT sensor
Malfunctioning CHT sensor
Refer to Thermostat Monitor in Section 1, Description and Operation, for system information.

P0127 - Intake Air Temperature Too High Indicates that IAT2 sensor has detected a potential abnormality in the intercooler system. This condition will cause the boost from the supercharger to be bypassed to avoid potential engine damage. Blockage of heat exchangers
Low fluid level
Fluid leakage
Intercooler pump or relay failure
Crossed intercooler coolant lines
Monitor IAT2 PID. Typical IAT2 temperature should be greater than IAT1. Refer to Section 6 : Reference Values for ranges.

P0131 - HO2S Sensor Circuit Out of Range Low Voltage (HO2S-11) The HO2S sensor is monitored for a negative voltage known as characteristic shift downward (CSD). If the sensor is thought to be switching from 0 volts to -1 volts during testing, the PCM will use this input and remain in fuel control. Contaminated HO2S (water, fuel, etc)
Crossed HO2S signal/signal return wiring

P0133 - HO2S Sensor Circuit Slow Response (HO2S-11) The HEGO Monitor checks the HO2S Sensor frequency and amplitude. If during testing the frequency and amplitude were to fall below a calibrated limit, the test will fail. Contaminated HO2S sensor.
Exhaust leaks.
Shorted /open wiring.
Improper fueling.
MAF sensor.
Deteriorating HO2S sensor.
Inlet air leaks.
Access HO2S test results from the Generic OBD-II menu to verify DTC.

P0135 - HO2S Sensor Circuit Malfunction (HO2S-11) During testing the HO2S Heaters are checked for opens/shorts and excessive current draw. The test fails when current draw exceeds a calibrated limit and/or an open or short is detected. Short to VPWR in harness or HO2S.
Water in harness connector.
Open VPWR circuit.
Open GND circuit.
Low battery voltage.
Corrosion or poor mating terminals and wiring
Damaged HO2S heater.
Damaged PCM.
Wiring.
Damaged HO2S heater.
Damaged PCM.

P0136 - HO2S Sensor Circuit Malfunction (HO2S-12) The downstream HO2S sensor(s) are continuously checked for maximum and minimum voltages. The test fails when the voltages fail to meet the calibrated limits. Pinched, shorted, and corroded wiring and pins.
Crossed sensor wires.
Exhaust leaks.
Contaminated or damaged sensor.

P0141 - HO2S Sensor Circuit Malfunction (HO2S-125) See DTC P0135
P0148 - Fuel Delivery Error At least one bank lean at wide open throttle. Severely restricted fuel filter.
Severely restricted fuel supply line.

P0151 - HO2S Sensor Circuit Out of Range Low Voltage (HO2S-21) See DTC P0131

P0153 - HO2S Sensor Circuit Slow Response (HO2S-21) See DTC P0133

P0155 - HO2S Sensor Circuit Malfunction (HO2S-21) See DTC P0135

P0156 - HO2S Sensor Circuit Malfunction (HO2S-22) See DTC P0136

P0161 - HO2S Sensor Circuit Malfunction (HO2S-22) See DTC P0135

P0171 - System to Lean (Bank 1) The Adaptive Fuel Strategy continuously monitors fuel delivery hardware. The test fails when the adaptive fuel tables reach a rich calibrated limit. For lean and rich DTCs:
Fuel system
Excessive fuel pressure.
Leaking/contaminated fuel injectors.
Leaking fuel pressure regulator.
Low fuel pressure or running out of fuel.
Vapor recovery system.
Induction system:
Air leaks after the MAF.
Vacuum Leaks.
PCV system.
Improperly seated engine oil dipstick.
EGR system:
Leaking gasket.
Stuck EGR valve.
Leaking diaphragm or EVR.
Base Engine:
Oil overfill.
Cam timing.
Cylinder compression.
Exhaust leaks before or near the HO2Ss.
A SHRTFT-1,2 PID value between -25% to +35% and a LONGFT-1,2 PID value between -35% to +35% is acceptable. Reading beyond these values indicate a failure.

P0172 - System to Rich (Bank 1) The Adaptive Fuel Strategy continuously monitors the fuel delivery hardware. The test fails when the adaptive fuel tables reach a lean calibrated limit. See Possible Causes for DTC P0171 See Diagnostic Aides for DTC P0171

P0174 - System to Lean (Bank 2) The Adaptive Fuel Strategy continuously monitors the fuel delivery hardware. The test fails when the adaptive fuel tables reach a rich calibrated limit. See Possible Causes for DTC P0171. See Diagnostic Aides for DTC P0171

P0175 - System to Rich (Bank 2) The Adaptive Fuel Strategy continuously monitors the fuel delivery hardware. The test fails when the adaptive fuel tables reach a lean calibrated limit. See Possible Causes for DTC P0171. See Diagnostic Aides for DTC P0171

P0176 - Flexible Fuel (FF) Sensor Circuit Malfunction The FF sensor input signal to PCM is continuously monitored. The test fails when the signal falls out of a maximum or minimum calibrated range. Open or short in FF sensor VPWR circuit
Open in battery ground to FF sensor circuit
Open in FF sensor signal circuit
Short to ground in FF sensor signal circuit
Fuel contamination
Short to VPWR in FF sensor battery ground circuit
Short to VPWR in FF sensor signal circuit
Fuel separation
Damaged FF sensor
Damaged PCM
A flex fuel (FF) PID reading of 0 Hz with the key ON and engine OFF or with engine at idle indicates a hard fault.

P0180 - Engine Fuel Temperature Sensor A Circuit Low Input (EFT) The comprehensive component monitor (CCM) monitors the EFT sensor circuit to the PCM for low and high voltage. If voltage were to fall below or exceed a calibrated limit and amount of time during testing, the test will fail. Open or short in harness.
Low ambient temperature operation.
Improper harness connection.
Damaged EFT sensor.
Damaged PCM.
Verify EFT-PID value to determine open or short.

P0181 - Engine Fuel Temperature Sensor A Circuit Range/ Performance (EFT) The comprehensive component monitor (CCM) monitors the EFT Temperature for acceptable operating temperature. If during testing voltage were to fall below or exceed a calibrated limit, a calibrated amount of time the test will fail. Open or short in harness.
Low ambient temperature operation.
Improper harness connection.
Damaged EFT sensor.
Damaged PCM.
Verify EFT-PID value to determine open or short.

P0182 - Engine Fuel Temperature Sensor A Circuit Low Input (EFT) The comprehensive component monitor (CCM) monitors the EFT sensor circuit to the PCM for low voltage. If voltage were to fall below a calibrated limit and amount of time during testing, the test will fail. Short in harness.
VREF open or shorted.
Low ambient temperature operation.
Improper harness connection.
Damaged EFT sensor.
Damaged PCM.
Verify EFT-PID and VREF values to determine open or short.

P0183 - Engine Fuel Temperature Sensor A Circuit High Input (EFT) The comprehensive component monitor (CCM) monitors the EFT sensor circuit to the PCM for high voltage. If voltage were to exceed a calibrated limit and a calibrated amount of time during testing, the test will fail. Open or short to PWR in harness.
Damaged EFT sensor.
Improper harness connection.
Damaged PCM.
Verify EFT-PID value to determine open or short.

P0186 - Engine Fuel Temperature Sensor B Circuit Range/Performance (EFT) See DTC P0181.

P0187 - Engine Fuel Temperature Sensor B Circuit Low Input (EFT). See DTC P0182.

P0188 - Engine Fuel Temperature Sensor B Circuit High Input (EFT) See DTC P0183.

P0190 - Fuel Rail Pressure Sensor Circuit Malfunction (FRP) The comprehensive component monitor (CCM) monitors the FRP sensor to the PCM for VREF voltage. The test fails when the VREF voltage from the PCM drops to a voltage less than a minimum calibrated value. VREF open in harness.
VREF open in sensor.
VREF open in PCM.
Verify VREF voltage between 4.0 and 6.0V.

P0191 - Fuel Rail Pressure Sensor Circuit Performance (FRP) The comprehensive component monitor (CCM) monitors the FRP pressure for acceptable fuel pressure. The test fails when the fuel pressure falls below or exceeds a minimum/maximum calibrated value for a calibrated period of time. High fuel pressure.
Low fuel pressure.
Damaged FRP sensor.
Excessive resistance in circuit.
Low or no fuel.
A FRP PID value during KOER of 138 kpa (20 psi) and 413 kpa (60 psi) for gasoline or 586 kpa (85 psi) and 725 kpa (105 psi) for natural gas vehicles (NG) is acceptable.

P0192 - Fuel Rail Pressure Sensor Circuit Low Input (FRP) The comprehensive component monitor (CCM) monitors the FRP sensor circuit to the PCM for low voltage. If voltage were to fall below a calibrated limit and amount of time during testing, the test will fail. FRP signal shorted to SIG RTN or PWR GND.
FRP signal open (NG only)
Low fuel pressure (NG only)
Damaged FRP sensor.
Damaged PCM.
A FRP PID value during KOER or KOEO less than 0.3 volts for gasoline or 0.5 volts for natural gas vehicles (NG) would indicate a hard fault.

P0193 - Fuel Rail Pressure Sensor Circuit High Input (FRP) The comprehensive component monitor (CCM) monitors the FRP sensor circuit to the PCM for high voltage. If voltage were to fall below a calibrated limit and a calibrated amount of time during testing, the test will fail. FRP signal shorted to VREF or VPWR.
FRP signal open (gasoline only)
Low fuel pressure (NG only)
Damaged FRP sensor.
Damaged PCM.
High fuel pressure (caused by damaged fuel pressure regulator) NG.
A FRP PID value during KOER or KOEO less than 0.3 volts for gasoline or 0.5 volts for natural gas vehicles (NG) would indicate a hard fault.

P0201 through P0212 - Cylinder #1 through Cylinder #12 Injector Circuits The comprehensive component monitor (CCM) monitors the operation of the fuel injector drivers in the PCM. The test fails when the fuel injector does not operate electrically even though the harness assembly and fuel injectors test satisfactorily. Faulty fuel injector driver within the PCM.
PID Data Monitor INJ1F-INJ12F fault flags = YES.

P0217 - Engine Coolant Over-Temperature Condition Indicates an engine overheat condition was detected by the cylinder head temperature (CHT) sensor. This condition will cause the boost from the supercharger to be bypassed to avoid potential engine damage. Engine cooling system concerns.
Low engine coolant level.
Base engine concerns.
Monitor CHT PID for overheat condition. Typical CHT temperature should be close to cooling system thermostat opening specification.

P0230 - Fuel Pump Primary Circuit Malfunction NOTE: For natural gas applications, the following description applies to the fuel shutoff valve (FSV) circuit.
The PCM monitors the fuel pump (FP) circuit output from the PCM. The test fails if: With the FP output commanded ON (grounded), excessive current draw is detected on the FP circuit; or with the FP output commanded OFF, voltage is not detected on the FP circuit (the PCM expects to detect VPWR voltage coming through the fuel pump relay coil to the FP circuit). Open or shorted fuel pump (FP) circuit
Open VPWR circuit to fuel pump relay
Damaged fuel pump relay
Damaged PCM
When the FPF PID reads YES, a fault is currently present.
An open circuit or short to ground can only be detected with the fuel pump commanded OFF.
A short to power can only be detected with the fuel pump commanded ON.
During KOEO and KOER self-test, the fuel pump output command will be cycled ON and OFF.


__________________
Chad (S2)
S2 is offline